skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Turner, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Channel incision degrades ecosystems by lowering water tables and disconnecting floodplains. Stream restoration often aims to reverse these impacts. However, projects typically receive minimal monitoring, and treatment effectiveness has not been validated. We used trait‐based analysis to evaluate whether two stream restoration techniques—beaver dam analogs (BDAs) and plug‐and‐ponds—raised water tables and increased overbank flooding, whether these altered environmental filters facilitated recovery of riparian plant communities, and how reassembly impacted the representation of traits that influence ecosystem function. We report on a before‐after‐control‐impact study and Bayesian analysis that estimated the probability that treatments affected riparian plant functional diversity and composition. We found a high probability (0.99 and 0.97, respectively) that BDAs decreased functional dispersion by ≥50% and plug‐and‐ponds decreased dispersion by ≥30%. Both treatments increased the relative abundance of high moisture use plants, wetland plants, and plants with high anaerobic tolerance. For example, BDAs increased the relative abundance of obligate wetland plants by 100%, and plug‐and‐ponds increased the relative abundance of facultative wetland plants by 105%, on average. These results suggest treatments modified environmental filters and recovered riparian plant communities. Ecosystem function was likely altered as the streamside plant community reassembled. Small increases in functional divergence suggest both treatments increased resource use efficiency, and we found a high probability of small treatment effect sizes (<20%) related to changes in community‐level C:N and nitrogen fixation. Our results demonstrate trait‐based analysis can detect a rapid response to restoration and offer a cost‐effective monitoring approach to compare treatments across space and time. 
    more » « less
    Free, publicly-accessible full text available April 4, 2026
  2. <bold>Abstract</bold> Mitochondrial tRNA gene loss and cytosolic tRNA import to mitochondria are two common phenomena in mitochondrial biology, but their importance is often under-appreciated in animals. This is because most bilaterally symmetrical animals (Bilateria) encode a complete set of tRNAs needed for mitochondrial translation. By contrast, studies of mitochondrial genomes in non-bilaterian animals have shown a reduced tRNA gene content in several lineages, necessitating tRNA import. Interestingly, in most of these lineages tRNA gene content appears to be set early in the evolution of the group and conserved thereafter. Here we demonstrate that Clade B of Haplosclerid Sponges (CBHS) represent an exception to this pattern. We determined mt-genome sequences for eight species from this group and analyzed them with six that had been previously available. In addition, we determined mt-genome sequences for two species of haploslerid sponges outside the CBHS and used them with eight previously available sequences as outgroups. We found that tRNA gene content varied widely among CBHS species: from three in an undescribedHaliclonaspecies (Haliclona sp. TLT785) to 25 inXestospongia mutaandX. testudinaria. Furthermore, we found that all CBHS species outside the genusXestospongialackedatp9, while some also lackedatp8. Analysis of nuclear sequences fromNiphates digitalisrevealed that bothatp8andatp9had transferred to the nuclear genome, while the absence of mt-tRNA genes represented their genuine loss. Overall, CBHS can be a useful animal system to study mt-tRNA genes loss, mitochondrial import of cytosolic tRNA, and the impact of both of these processes on mitochondrial evolution. Significance statementIt is generally believed that the gene content is stable in animal mitochondrial (mt) DNA. Indeed, mtDNA in most bilaterally symmetrical animals encompasses a conserved set of 37 genes coding for 13 proteins, two rRNAs and 22 tRNAs. By contrast, mtDNA in non-bilaterian animals shows more variation in mt gene content, in particular in the number of tRNA genes. However, most of this variation occurs between major non-bilaterian lineages. Here we demonstrate that a group of demosponges called Clade B of Haplosclerid Sponges (CBHS) represents a fascinating exception to this pattern, with species experiencing recurrent losses of up to 22 mt-tRNA genes. We argue that this group constitutes a promising system to investigate the effects of tRNA gene loss on evolution of mt-genomes as well as mitochondrial tRNA import machinery. 
    more » « less
  3. This study presents a comprehensive taxonomic revision of the family Suberitidae (Porifera: Demospongiae) for California, USA. We include the three species previously known from the region, document two additional species previously known from other regions, and formally describe four new species as Pseudosuberites latke sp. nov., Suberites californiana sp. nov., Suberites kumeyaay sp. nov., and Suberites agaricus sp. nov. Multi-locus DNA sequence data is presented for seven of the nine species, and was combined with all publicly available data to produce the most comprehensive global phylogeny for the family to date. By integrating morphological and genetic data, we show that morphological characters may be sufficient for regional species identification but are likely inadequate for global classification into genera that reflect the evolutionary history of the family. We therefore propose that DNA sequencing is a critical component to support future taxonomic revisions. 
    more » « less
  4. California's network of marine protected areas was created to protect the diversity and abundance of native marine life, but the status of some taxa is very poorly known. Here we describe the sponges (phylum Porifera) from the Carmel Pinnacles State Marine Reserve, as assessed by a SCUBA-based survey in shallow waters. Of the 29 sponge species documented, 12 (41%) of them were previously unknown. Using a combination of underwater photography, DNA sequencing, and morphological taxonomy, we greatly improve our understanding of the status and distribution of previously described species and formally describe the new species as Hymedesmia promina sp. nov., Phorbas nebulosus sp. nov., Clathria unoriginalis sp. nov., Clathria rumsena sp. nov., Megaciella sanctuarium sp. nov., Mycale lobos sp. nov., Xestospongia ursa sp. nov., Haliclona melissae sp. nov., Halichondria loma sp. nov., Hymeniacidon fusiformis sp. nov., Scopalina carmela sp. nov., and Obruta collector gen. nov., sp. nov. An additional species, Lissodendoryx topsenti (de Laubenfels 1930), is moved to Hemimycale, and H. polyboletus comb. nov., nom. nov. is created due to preoccupation by H. topsenti (Burton, 1929). Several of the new species appear to be rare and/or have very restricted distributions, as they were not found at comparative survey sites outside of Carmel Bay. These results illustrate the potential of qualitative presence/absence systematic surveys of understudied taxa to discover and document substantial novel diversity.  
    more » « less
  5. Macrhybopsis tetranema and Oncorhynchus gilae are fish species endemic to the Southwestern United States. We present the complete mitochondrial genomes for these species. Each genome consisted of 13 protein-coding genes, two ribosomal (rRNA) genes, 22 transfer RNA (tRNA) genes, and the control region (D-loop). Mitogenome lengths were 16,916 base pairs (bp) for M. tetranema, and 16,976 bp for O. gilae. The GC content was 41% for M. tetranema and 46% for O. gilae. The relationships of M. tetranema and O. gilae were consistent with previous phylogenetic analyses. 
    more » « less
  6. Sponges are common and diverse in California, but they have received little study in the region, and the identities of many common species remain unclear. Here we combine fresh collections and museum vouchers to revise the order Axinellida for California. Seven new species are described: Endectyon (Endectyon) hispitumulus, Eurypon curvoclavus, Aulospongus viridans, Aulospongus lajollaensis, Halicnemia litorea, Halicnemia montereyensis, and Halicnemia weltoni. One new combination is also described, and two existing species are reduced to junior synonyms, resulting in a total of 13 species; a dichotomous key to differentiate them is provided. DNA data from 9 of the 13 species is combined with publicly available data to produce updated global phylogenies for the order.   
    more » « less
  7. Abstract Volumetric muscle loss (VML) results in permanent functional deficits and remains a substantial regenerative medicine challenge. A coordinated immune response is crucial for timely myofiber regeneration, however the immune response following VML has yet to be fully characterized. Here, we leveraged dimensionality reduction and pseudo-time analysis techniques to elucidate the cellular players underlying a functional or pathological outcome as a result of subcritical injury or critical VML in the murine quadriceps, respectively. We found that critical VML resulted in a sustained presence of M2-like and CD206hiLy6Chi‘hybrid’ macrophages whereas subcritical defects resolved these populations. Notably, the retained M2-like macrophages from critical VML injuries presented with aberrant cytokine production which may contribute to fibrogenesis, as indicated by their co-localization with fibroadipogenic progenitors (FAPs) in areas of collagen deposition within the defect. Furthermore, several T cell subpopulations were significantly elevated in critical VML compared to subcritical injuries. These results demonstrate a dysregulated immune response in critical VML that is unable to fully resolve the chronic inflammatory state and transition to a pro-regenerative microenvironment within the first week after injury. These data provide important insights into potential therapeutic strategies which could reduce the immune cell burden and pro-fibrotic signaling characteristic of VML. 
    more » « less
  8. Sponges (phylum Porifera) are common inhabitants of kelp forest ecosystems in California, but their diversity and ecological importance are poorly characterized in this biome. Here I use freshly collected samples to describe the diversity of the order Scopalinida in California. Though previously unknown in the region, four new species are described here: Scopalina nausicae sp. nov., S. kuyamu sp. nov., S. goletensis sp. nov., and S. jali sp. nov.. These discoveries illustrate the considerable uncharacterized sponge diversity remaining in California kelp forests, and the utility of SCUBA-based collection to improve our understanding of this diversity.  
    more » « less